
 
Constrained optimisation 
 
Problems in economics typically involve maximising some quantity, such 
as utility or profit, subject to a constraint – for example income. We shall 
therefore need techniques for solving such constrained optimisation 
problem. 
 
Typically, we will have an objective function F(X1,X2,…,Xn), where 
X1…Xn are the choice variables, and one or more constraint functions 
G1(X1,X2,…,Xn),…Gk(X1,X2,…,Xn). The problem is typically formulated 
as: 
 
Maximise/Minimise F(X1,X2,…,Xn) subject to G1(X1,X2,…,Xn)≤0, 
G2(X1,X2,…,Xn)≤0,…, Gk(X1,X2,…,Xn)≤0. 
 
In this section, we will consider techniques for solving problems of this 
type. 
 
Constrained optimisation in one variable 
 
We will start by considering constrained optimisation problems in one 
variable. 
 
For example, consider the problem: 
 
Maximise F(x)=4+3x-x2 
 
Subject to the condition x≤2 
 
We can rewrite the constraint as G(x)=x-2≤0, to get it into the form 
described above. 
 
We can easily solve this problem using differentiation, and see the 
solution graphically: 
 
 
 



 
We have that dF/dx=3-2x. Setting this to 0 gives x=1.5, F(x)=6.25, and 
consideration of the second differential shows this is a local maximum. 
The second differential is equal to -2, so the function is concave for all 
real values, so this is a global maximum. Finally, the resulting value of x 
is within the constraint, so that this is the solution to the constrained 
optimisation problem as well as to the unconstrained problem. 
 
In this case, the constraint, x≤2, is non-binding or slack. Suppose that 
instead we had imposed the constraint G(x)=x-1≤0, i.e. x≤1 
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We can now see from the graph that the optimum solution is x*=1, giving 
F(x)=6. This time the constraint is binding. Although it is easy to see 
what is happening in this case, in general we need to be able to 
distinguish between binding and non-binding constraints. 
 
Constrained optimisation in more than one variable: the method of 
Lagrange Multipliers 
 
The most important method for solving constrained optimisation 
problems in more than one variable is the method of Lagrange 
Multipliers. 
 
Consider the problem of a consumer seeking to maximise their utility 
subject to a budget constraint. They must divide their income M between 
food (F) and clothes (C), with prices PF and PC, so as to maximise the 
following ‘Stone-Geary’ utility function: 
 
U(F,C) = αLn(F-F0) + (1-α)Ln(C-C0) 
 
So their budget constraint can be written 
 
G(F,C) = PFF + PCC – M = 0 
 
Our problem is to maximise U(F,C), subject to the constraint G(F,C)=0. 
 
To solve this we introduce an auxiliary variable λ, the Lagrange 
Multiplier, and form the Lagrangian function 
 
L(F,C,λ) = U(F,C) – λG(F,C) 
 
To maximise U(F,C) subject to our constraint, we instead solve the 
unconstrained maximisation problem for L(F,C,λ). 
 
To do this, we must set all three partial derivatives to zero. Thus, 
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The third condition is of course simply the original constraint. 
 
It is worth taking a moment to look at the economic significance of this 
approach. We can rewrite equations 1) and 2) to say that δU/δF = λPF and 
δU/δC = λPC, whereupon, eliminating λ, we get: 
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In other words, that the ratio of marginal utilities to price must be the 
same for both goods. This is a familiar result from elementary consumer 
choice theory, and illustrative of a general economic principle: an 
economic quantity (utility, output, profits, etc.) is optimised where the 
ratio of marginal benefits of different uses of resources is equal to the 
ratio of marginal costs. 
 
Solving, we obtain: 
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Which says that, after the minimum quantities C0 and F0 have been 
bought, remaining spending is allocated in the proportions α:(1-α) 
between food and clothing – this is of course a particular property of this 
utility function, rather than any general law. 
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What does λ signify? Well, if we feed back our solutions for F and C into 
the Utility function, we find that 
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Which can be rearranged to give  



 
U*=α(Ln(α)-Ln(PF))+(1-α)(Ln(1-α)-Ln(PC)) + Ln(M-PFF0-PCC0) 
 
Whereupon δU*/δM = 1/( M-PFF0-PCC0)  = λ. 
 
Thus, λ gives the marginal utility from extra income. More generally, the 
Lagrange Multiplier λ gives the marginal increase in the objective 
function from a unit relaxation of the constraint. 
 
Lagrange multipliers; a formal treatment 
 
We now extend the treatment of Lagrange Multipliers to functions of 
several variables, and to allow for both non-negativity constraints and 
non-binding constraints. 
 
Thus, we consider the following problem: 
 
Maximise F(X1,….,Xn) subject to 
 
G1(X1,….,Xn)≤0 
…. 
Gk(X1,….,Xn)≤0 
 
Xi≥0, for each i=1,…,n. 
 
Thus we have n variables, and k constraints, each of which may be 
binding or non-binding. We also have n non-negativity constraints. 
 
We form the Lagrangian: 
 
L(X1,…,Xn,λ1,...,λn)=F(X1,...,Xn)-λ1G1(X1,…,Xn)-…-λkGk(X1,...,Xn) 
 
Note there are now k Lagrange Multipliers, one for each constraint. The 
Kuhn-Tucker theorem states that, at the optimum solution, (X1*,…,Xn*) 
where F takes its maximum value, there exist values for λ1*,...,λn* for 
λ1,...,λn such that: 
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2) For each j=1,...,k, Gj(λj*)≤0, λj*>0, and either λj*=0 or Gj(λj*)=0. 
 



The second condition is worth looking at more closely. It says that, first 
of all, the Lagrange multiplier must always take a positive value (this is 
natural if we consider the role of the LM as the marginal benefit from 
relaxing the constraint – this must be positive); secondly, that the 
constraint must be satisfied; and thirdly that either the constraint must be 
just satisfied (a binding constraint), or the value of the LM must be zero, 
in which case we have a slack constraint. Again this is natural, since if the 
constraint is slack, then there is no marginal benefit from relaxing it. 
 
Note that these are necessary conditions for the existence of a local 
maximum. It is possible to state sufficient conditions that specify cases 
when we can guarantee that a point that satisfies conditions 1) and 2) will 
be a global maximum, but these conditions are quite complex, and 
beyond the scope of this course. 
 
In general, it may be necessary to look at all the different possible 
combinations of binding and slack constraints, and of boundary and 
interior solutions. 
 
Exact constraints 
 
If one of the constraints is exact, that is requiring G(X1,…,Xn)=0, then 
condition 2) for this constraint does not apply, instead it is required, of 
course, that the constraint is satisfied. 
 
Non-negativity conditions 
 
We have framed the problem on the assumption that all the variables 
must be non-negative. If a particular variable Xi does not have to be non-
negative, then condition 1) for that variable simply becomes δL/δXi=0. 
 
Constrained minimisation 
 
We have formulated the Kuhn-Tucker theorem in terms of maximising a 
function. Of course, it is easy to minimise a function F(X1,…,Xn) by 
maximising –F(X1,…,Xn). However, more usually, we solve a 
minimisation problem by forming the Lagrangian as 
L(X1,…,Xn,λ1,...,λk)=F(X1,...,Xn)+λ1G1(X1,…,Xn)+…+λkGk(X1,...,Xn), 
and proceeding as above. 
 
Example 
 



A manufacturing firm produces two models of Widget, A and B. Let X 
and Y denote the quantity of models A and B produced in a week 
respectively. Model A requires 2 hours of machine time per item, while 
model B requires 1.5 hours of machine time. Each hour of machine time 
costs £2, whether for type A or type B. The total labour and material costs 
for producing X units of type A is 4X-0.1X2+0.02X3, while for Y of type 
B, the cost is 4.5Y-0.1Y2+0.02Y3. The two are strong substitutes, so that 
the demand curve for types A and B are given by X = 80 – 0.5PA + 0.3PB 
and Y = 70 + 0.25PA – 0.4PB, where PA and PB are the price in pounds of 
A and B respectively. 
 
The two constraints on (short-term) production are firstly, that there is 
only a maximum of 80 hours available machine time per week, (The rest 
being required for maintenance), and that the firm is under contractual 
obligations to produce a total of at least 40 widgets per week. 
 
What is the optimal quantity of types A and B for the firm to produce to 
maximise profits? 
 
First of all, we solve the demand functions to work out price in terms of 
X and Y, giving PB=220-X-2Y, and PA = 292-2.6X-1.2Y. Thus, total 
revenue is equal to 292X-2.6X2+220Y-2Y2-3.2XY. 
 
Total costs (machining, labour and materials) come to 8X-0.1X2+0.02X3 
+ 7.5Y – 0.1Y2 + 0.02Y3. Hence, we can write the profit function as: 
 
Π(X,Y)=284X-2.5X2-0.02X3+212.5Y-1.9Y2 -0.02Y3 – 3.2XY 
 
The constraints on machine time and production give: (putting them in 
the required form) 
 
G1(X,Y)=2X+1.5Y-80≤0 
G2(X,Y)=40-X-Y≤0 
 
We also have the non-negativity constraints X≥0 and Y≥0, as we can’t 
have negative production. 
 
We form the Lagrangian 
 
L(X,Y,λ,µ)= Π(X,Y)=284X-2.5X2-0.02X2+212.5Y-1.9Y2 -0.02Y3–3.2XY 
– λ(2X+1.5Y-80) – µ(40-X-Y). 
 



We thus have the conditions: 
 
1) δL/δX = 284 – 5X – 0.06X2 – 3.2Y – 2λ + µ ≤ 0, with equality if X>0. 
 
2) δL/δY = 212.5 – 3.8Y–0.06Y2 – 3.2X – 1.5λ + µ≤0, with equality if 
Y>0 
 
3) λ≥0, G1(X,Y)≤0, and either λ=0 or G1(X,Y)=0 
4) µ≥0, G2(X,Y)≤0, and either λ=0 or G2(X,Y)=0 
 
Let us start by looking for interior solutions, so that X,Y>0. 
 
Let us also start by looking for solutions where both constraints are slack, 
that is where λ=µ=0. Solving some ugly equations for conditions 1) and 2) 
gives X = 22.37, and Y= 26.22. (Ignoring the fact that you can’t have 
non-integer quantities of widgets for now). However, this does not satisfy 
the constraint on machine time, so this is impossible. 
 
Let us now consider solutions where the first constraint is slack, so λ=0, 
but the second is binding, so X+Y=40, and µ≥0. Conditions 1) and 2) 
now become 
 
284 – 5X – 0.06X2 -3.2(40-X) + µ = 0 
 
So that  
 
3) 156 – 1.8X – 0.06X2 + µ = 0 
 
And 212.5 – 3.8(40-X)–0.06(40-X)2 -3.2X + µ = 0 
 
So that  
 

3) -35.5 + 5.4X – 0.06X2 + µ =0 
 
Which gives 
 
191.5 – 7.2X = 0, so X = 26.6, whereupon Y = 13.4. This satisfies the 
constraint on machine time, and also the non-negativity conditions. We 
must check that it gives a positive value for µ. With these values, µ= -
35.5+5.4*26.6-0.06*26.6*26.6 = -51.3<0. Hence this violates the 
condition that the LM be non-negative, so it is not a possible solution. 
 



We can now consider the possibility that the machine-time constraint is 
binding, so that 2X + 1.5Y = 80, but that the production constraint is 
slack, so that µ=0 and X+Y≥40. We now have 
 

1) 284 – 5X – 0.06X2 – 3.2Y – 2λ =0 and 
2) 212.5 – 3.8Y–0.06Y2 – 3.2X – 1.5λ = 0. 

 
Substituting using 2X + 1.5Y = 80, so X = 40 – 0.75Y gives 
 

3) 2λ = -.03375Y2 + 4.15Y – 12 and 
4) 1.5λ = -.06Y2 – 1.4Y + 84.5 

 
Which gives .04625Y2 + 6.01667Y – 124.6667 = 0  
 
One solution is negative, the other gives Y = 18.18, whence X = 26.365. 
We need to confirm that this gives a non-negative value of λ. These 
values give λ = 52.29, which is OK. Hence, (X,Y) = (26.365,18.18) is a 
possible solution to our optimisation problem. 
 
We may now suppose both constraints are binding, so that X+Y=40 and 
2X+1.5Y=80. This is only possible with X=40 and Y=0. Then conditions 
1) and 2) become 
 
284 – 200 – 96 – 2λ + µ = 0, so -12 – 2λ + µ =0 and 
 
212.5 – 128 -1.5λ + µ = 0, so 84.5 – 1.5λ + µ = 0. 
 
Hence, 0.5λ + 96.5 = 0, giving a negative value for λ, which is impossible. 
 
We have thus exhausted all possibilities for internal solutions, the only 
one being (X,Y) = (26.365,18.18). We may now try for boundary 
solutions. We may first try X=Y=0, which gives the conditions: 
 

1) 284 – 2λ + µ ≤0 
2) 212.5 -1.5λ + µ ≤0 

 
Again, we may consider binding or non-binding constraints. If both are 
non-binding, so that λ=µ=0, then clearly 1) and 2) are not satisfied. 
However, if either constraint is binding, then X or Y must be strictly 
positive, which contradicts our assumption. 
 
What if X=0, but Y≥0? In that case, the conditions become 



 
1) 284 – 3.2Y -2λ + µ ≤0 
2) 212.5 – 3.8Y – 0.06Y2 – 1.5λ + µ = 0 

 
Let us try both constraints non-binding, so that λ=µ=0. This gives Y = 
35.75 as the non-negative solution to 2), but that fails to satisfy 1). If the 
machine constraint is binding but the production constraint is slack, then 
2) gives a negative value for λ, which is impossible. If the production 
constraint is binding but the machine constraint slack (so Y=40 and λ=0), 
then 2) gives µ=35.5, but this fails to satisfy 1). Finally we cannot have 
both constraints binding, as then X is positive. Hence, there is no solution 
with X=0 but Y≥0. 
 
Finally, we may look for solutions where X≥0 and Y=0. Our first two 
conditions now become 
 

1) 284 – 5X – 0.06X2 – 2λ + µ = 0 
2) 212.5 – 3.2X -1.5λ + µ ≤0 

 
The constraints must now be either both binding or both slack, as they are 
both precisely satisfied when X=40. In this case, the conditions become 
 
-12 – 2λ + µ=0 
84.5 – 1.5λ+µ =0 
 
But this makes λ negative. If both constraints are slack, so that λ=µ=0, we 
have from 1) that X = 38.77. However, this fails to satisfy condition 2). 
 
Thus, we have ruled out all possible boundary solutions, leaving only the 
interior solution (X,Y)=( 26.365,18.18), where the machine-time 
constraint is binding, and the production constraint is slack. As this is the 
only possibility, and as there logically must be some profit-maximising 
combination of outputs subject to the constraint (as infinite profits are 
clearly impossible), then this must in fact be the global maximum 
solution. 
 
This has been a rather cumbersome process of checking all possibilities. 
In fact, consideration of the properties of the function would enable us to 
rule out a lot of the possible solutions very easily, but this would take 
rather more theoretical machinery to demonstrate. You are not likely to 
meet such  awkward cases in your MA programme, but this example 
illustrates how the process can be carried out if necessary. 


